Построение выпуклой оболочки для набора точек. Алгоритм Джарвиса. Реализация C#.

Многоугольник с одинаковым успехом можно задать упорядоченным множеством как его ребер, так и его вершин. В задаче о выпуклой оболочке мы до сих пор обращали внимание главным образом на изолированные крайние точки. А что если вместо этого попытаться определить ребра выпуклой оболочки, приведет ли такой подход к созданию практически пригодного алгоритма? Если задано множество точек, то довольно трудно быстро определить, является или нет некоторая точка крайней. Однако если даны две точки, то непосредственно можно проверить, является или нет соединяющий их отрезок ребром выпуклой оболочки.

Теорема. Отрезок l, определяемый двумя точками, является ребром выпуклой оболочки тогда и только тогда, когда все другие точки заданного множества лежат на l или с одной стороны от него.

Джарвис использовал эту идею, и в этом разделе мы рассмотрим предложенный им алгоритм.

Присоединяйся

Зарегестрируйся с помощью социальных сетей.

Публикуй

Опиши работу, прикрепи файлы и назначь цену.

Зарабатывай

Получай пассивный доход с продажи работ.

Тебе понадобится 5 минут для публикации работы на сайте.
Скачать

бесплатно

Lab4.zip
92547
Алгоритм Джарвиса.docx
45427
Оцени работу

рейтинг

Поделись работой с друзьями

Мы не грузим циферки, чтоб ты увидел контент как можно быстрее;

Комментарии (0)

CyborDev

/ /

Оставить комментарий

Ты не можешь комментировать

Только зарегестрированые пользователи имеют возможность комментировать работы
Построение выпуклой оболочки для набора точек. Алгоритм Джарвиса. Реализация C#.
Многоугольник с одинаковым успехом можно задать упорядоченным множеством как его ребер, так и его вершин. В задаче о выпуклой оболочке мы до сих пор обращали внимание главным образом на изолированные крайние точки. А что если вместо этого попытаться определить ребра выпуклой оболочки, приведет ли такой подход к созданию практически пригодного алгоритма? Если задано множество точек, то довольно трудно быстро определить, является или нет некоторая точка крайней. Однако если даны две точки, то непосредственно можно проверить, является или нет соединяющий их отрезок ребром выпуклой оболочки.
Категория: Образование
Стоимость: Бесплатно